
EUROPA Quick Start

Create a NDDL model for the domain1.
Create a problem instance2.
Instantiate and run a Solver3.
Examine Results4.
Embed your model into an application5.
Next Steps6.

This tutorial provides just enough information for you to create and run simple planning problems using EUROPA.
Once you're familiar with the basics, see the Documentation page for more details.

EUROPA can be used to solve Constraint Programming, Scheduling and Planning problem. For the purposes of
this Quick Start guide we will use a simple planning problem.

These are the main steps that a EUROPA user will normally follow to solve a problem :

Create a model of the problem domain using NDDL, EUROPA's modeling language•
Create a particular instance of the problem using NDDL•
Instantiate a solver and ask it to look for a solution•
Inspect the plan, possibly modify the problem, tune the solver and re-plan•
When the model and the solver are working as expected, probably embed them into a larger application•

TODO: User must have build EUROPA already and have PLASMA and PlanWorks checked out

Now, for our example, let's assume that we will create a plan to turn a light bulb on and off.

For this simple domain here is what we would do (the files for this example can be found under
PlanWorks/PSUI/test/Light).

Create a NDDL model for the domain
The New Domain Description Language (NDDL) is a simple but powerful language used to describe both problem
domains and problem instances in EUROPA

// Light-model.nddl

#include "Plasma.nddl"

class LightSwitch extends Timeline
{
 predicate turnOn { duration=1; }
 predicate turnOff { duration=1; }
}

class LightBulb extends Timeline
{
 LightSwitch mySwitch_;

 LightBulb(LightSwitch b)
 {
 mySwitch_ = b;

Create a NDDL model for the domain 1

 }

 predicate On {}
 predicate Off {}
}

LightBulb::On
{
 met_by(object.Off); // Bulb must be Off to be turned On
 met_by(object.mySwitch_.turnOn); // Must be turned on through the switch
}

LightBulb::Off
{
 met_by(object.On); // Bulb must be On to be turned Off
 met_by(object.mySwitch_.turnOff); // Must be turned off through the switch
}

TODO: describe this model line by line

Create a problem instance
// Light-initial-state.nddl

#include "Light-model.nddl"

// Problem instance : turning the light off
LightSwitch switch1 = new LightSwitch();
LightBulb bulb1 = new LightBulb(switch1);

// At time 0, the bulb is on
fact(bulb1.On initialCondition);
eq(initialCondition.start,0);

// We want the bulb to be off by time 10
goal(bulb1.Off goal1);
lt(0,goal1.start);
lt(goal1.start,10);

TODO: describe this line by line

Instantiate and run a Solver
Run PSUI : (TODO, installation must be complete, environment set up)

% cd PlanWorks/PSUI/test
% ant -Dproject=Light
Buildfile: build.xml

init:

compile:

run:
 [echo] Running Light project

Instantiate and run a Solver 2

 [java] autoWrite 0
 [java] [XMLInterpreter:InterpretedObject]Initialized variable:bulb1.mySwitch_ to OBJECT-LightSwitch:CLOSED{switch1} in constructor

You should see the following window come up :

In the "Solver" window, hit the "Go" button to have the solver run. The solver should finish after 7 steps, satisfying
the goal that was specified in Light-initial-state.nddl (that is, to turn the light off by time=10).

Examine Results
You can now run the method showPlan() defined in Light.bsh?

Examine Results 3

You can now see that the planner decided that :

bulb1 is On from [] to [] and Off from [] to []•
lightSwitch1 is turned off at time []•

The intervals mean that the token can start/end at any point in the specified interval.

Examine Results 4

Embed your model into an application
Sometimes what we have done so far is all you may want to do : create a model, a problem instance, generate a
plan, visualize the results, and perhaps dump them to a file.
You may also want to embed this model as part of a bigger application, in that case, you will need to link in
EUROPA as a library into your application and use the programmatic API (Java or C++) to perform the steps
described above (TODO: provide a link to a full Java program). The details of how to embed EUROPA into your
application are provided here

Next Steps
TODO: provide links

See the Examples page to see more advanced examples that can serve as starting points for your own
model, or just to learn more about what EUROPA can do.

•

How to create your own project in PSUI•
How to embed your model into a C++ or Java application•
All the details about modeling in NDDL, configuring the built-in solver and using EUROPA's debugging
tools.

•

Extending EUROPA adding your own constraints, solvers, etc•

Next Steps 5

	tmp_ainwetracpdf

